A New Asterosaponin from the Starfish Culcita novaeguineae

Hai Feng TANG, Yang Hua YI*, Ling LI, Peng SUN, Da Zheng ZHOU, Bao Shu LIU

Research Center for Marine Drugs, School of Pharmacy, Second Military Medical University, Shanghai 200433

Abstract: A new asterosaponin named novaeguinoside A, along with a known saponin, asteronyl pentaglycoside sulfate, was isolated from the starfish *Culcita novaeguineae*. The new compound was identified to be sodium 6α -O- $\{\beta$ -D-fucopyranosyl- $(1\rightarrow 2)$ - β -D-fucopyranosyl- $(1\rightarrow 4)$ - $[\beta$ -D-quinovopyranosyl- $(1\rightarrow 2)$]- β -D-xylopyranosyl- $(1\rightarrow 3)$ - β -D-quinovopyranosyl}- 5α -pregn-9(11)-en-20-one- 3β -yl-sulfate by extensive spectral analysis and chemical evidence.

Keywords: Starfish, Culcita novaeguineae, steroidal glycoside, asterosaponin, novaeguinoside A.

Steroidal glycosides are the predominant metabolites of starfish and responsible for their general toxicity¹. According to the chemical structures they have been subdivided into three main groups: asterosaponins, cyclic steroidal glycosides and glycosides of polyhydroxylated steroids. The first group are usually $\Delta^{9(11)}$ -3 β , 6α -dioxyl and a sulfate group at C₃ and the penta- or hexaglycosides at C₆². Cushion star (*Culcita novaegui*neae) are abundant starfish distributed in South China Sea. Iorizzi and Kicha have reported the isolation of thirteen polyhydroxysteroid glycosides and five polyhydroxysteroids from the species³⁻⁵. However, no asterosaponin has been obtained up to date. In the course of search for new bioactive compounds from echinoderms under the guidance of Pyricularia oryzae bioassay⁶, we found that an n-BuOH extract from C. novaeguineae collected in 2002 at Sanya Bay showed significant activitiy against P. oryzae mycelia. In this report, we described the identification of a new asterosaponin named novaeguinoside A (1) isolated from the *n*-BuOH extract of *C. novaeguineae*, along with a known saponin, asteronyl pentaglycoside sulfate (2), i.e. 6α -O- $\{\beta$ -D-fucopyranosyl- $(1\rightarrow 2)$ - β -D-galactopyranosyl- $(1\rightarrow 4)$ - $[\beta$ -D-quinovopyranosyl- $(1\rightarrow 2)]$ - β -D-xyl opyranosyl- $(1\rightarrow 3)$ - β -D-quinovopyranosyl $\{-5\alpha$ -pregn-9(11)-en-20-one- 3β -yl-sulfate⁷.

Compound **1**, a white crystalline powder, mp 213-215°C, $[\alpha]_D^{20}+6$ (c 0.1, methanol), was positive to Liebermann-Burchard and Molish tests. The negative HRESI-MS and positive ESI-MS showed a quasi molecular ion peak at m/z 1127.4547 ([M-Na]⁺, calcd. 1127.4580) and a quasi molecular ion peak at m/z 1173[M+Na]⁺, respectively, indicating the molecular formula of $C_{50}H_{79}O_{26}SNa$. This was supported by the NMR data. The data of the 1H , 1S C-NMR and DEPT spectra of **1** suggested the presence of a steroidal aglycon with a 9(11)-double bond $[\delta_C 146.6]$ (s, C-9) and 115.9 (d, C-11); $\delta_H 15.09$ (brs, H-11)], one sulfated oxomethine

_

^{*} E-mail: tanghaifeng71@126.com

[δ_C 77.6 (d, C-3); δ_H 4.73 (m, H-3)], one oxomethine [δ_C 80.3 (d, C-6); δ_H 3.65 (m, H-6)], and one ketone carbonyl group (δ_C 208.3, s, C-20). The assignments of the NMR signals associated with the aglycon moiety (**Table 1**) were derived from 1 H- 1 H COSY, TOCSY, HMQC and HMBC experiments. Comparison of the NMR spectra of **1** with those of **2** indicated that these two glycosides possess the same aglycons, *i.e.* 6 α -hydroxypregn-9(11)-en-20-one-3 β -yl-sulfate (asterone sulfate). Glycosidation at C-6 was supported by the downfield shift of the C-6 signal in the 13 C-NMR spectrum with respect to asterosaponin aglycons of the 3 β , 6 α -dihydroxy oxidation pattern⁸. Because the chemical shift of C-19 is usually affected by the configuration of 6-OH, and the methyl signal at δ_C 19.3 (C-19) in **1** was in good agreement with the natural and synthetic aglycons with 6 α -OH 9 , C-6 was confirmed as α configuration.

The presence of D-quinovose, D-xylose and D-fucose in a 2:1:2 ratio in 1 was established by acid hydrolysis with 2 mol/L CF₃COOH followed by GC-MS analysis of the corresponding aldononitrile peracetates¹⁰. The five anomeric carbons and protons in 1 was confirmed by its 13 C- and 1 H-NMR spectra at $\delta_{\rm C}105.1$, 104.5, 104.8, 102.0, 106.9 and $\delta_H 4.76$ (d, J=6.4Hz), 5.02 (d, J=7.2Hz), 5.04 (d, J=7.2Hz), 4.79 (2H, d, J=7.2Hz) (**Table 1**). Assignment of the sugar moieties was performed by the ¹H-¹H COSY, TOCSY, HMQC spectra combined with HMBC spectrum. The location of the interglycosidic linkages was deduced from the chemical shifts of QuiI C-3 (δ90.5), Xyl C-2 (\delta 81.9), Xyl C-4 (\delta 78.8) and FucI C-2 (\delta 82.8), which were downfield relative to shifts expected for the corresponding methyl glycopyranosides. Correlations from QuiI H-1 to C-6, Xyl H-1 to QuiI C-3, QuiII H-1 to Xyl C-2, FucI H-1 to Xyl C-4 and FucII H-1 to FucI C-2 in the HMBC spectrum, and cross-peaks between H-6 and QuiI H-1, Xyl H-1 and Quil H-3, QuilI H-1 and Xyl H-2, FucI H-1 and Xyl H-4, FucII H-1 and FucI H-2 in the NOESY spectrum indicated that a pentasaccharide β -D-fucopyranosyl-(1 \rightarrow 2)- β -Dfucopyranosyl- $(1\rightarrow 4)$ - $[\beta$ -D-quinovopyranosyl- $(1\rightarrow 2)$]- β -D-xylopyranosyl- $(1\rightarrow 3)$ - β -Dquinovopyranosyl moiety was located at C-6 of the aglycon.

Hence, the structure of novaeguinoside A (1) was determined as sodium 6α -O- $\{\beta$ -D-fucopyranosyl- $(1\rightarrow 2)$ - β -D-fucopyranosyl- $(1\rightarrow 4)$ - $[\beta$ -D-quinovopyranosyl- $(1\rightarrow 2)$]- β -D-xylopyranosyl- $(1\rightarrow 3)$ - β -D-quinovopyranosyl}- 5α -pregn-9(11)-en-20-one- 3β -yl-sulfate. Some authors have questioned whether the asterone glycosides are natural saponins nevertheless, the others regarded these asterone glycosides as naturally occurring asterosaponins naturally occurring

Table 1 1 H(400MHz) and 13 C(100MHz) NMR data of novaeguinoside A (1) and asteronyl pentaglycoside sulfate (2) in C_5D_5N (δ in ppm, J in Hz)

Position -	δ_{C}		— Position	$\delta_{ m H}$	δ_{C}
	1	2	Position	1	
1	36.0 t	36.2 t	QuiI		
2	29.4 t	29.5 t	1	4.70 ^a / 4.76 d (6.4) ^c	105.1
3	77.6 d	78.1 d	2	3.84 m	74.1
4	30.7 t	30.9 t	3	3.66 m	90.5
5	49.3 d	49.3 d	4	3.42 t (8.8)	74.5
6	80.3 d	80.1 d	5	3.54 m	72.0
7	41.4 t	41.6 t	6	$1.46^{b} / 1.52 d (6.0)^{c}$	18.4
8	35.6 d	35.8 d	Xyl		
9	146.6 s	146.4 s	1	4.87 d (7.2) / 5.02 d (7.2) ^c	104.5
10	38.3 s	38.6 s	2	3.94 m	81.9
11	115.9 d	116.3 d	3	4.02 m	75.6
12	40.6 t	40.8 t	4	3.96 m	78.8
13	42.5 s	42.7 s	5	4.35 brd (8.4), 3.65 m	64.5
14	53.7 d	54.0 d	QuiII		
15	23.3 t	23.5 t	1	5.16 d (6.4) / 5.04 d (7.2) ^c	104.8
16	25.5 t	25.8 t	2	3.91 m	76.2
17	63.4 d	63.7 d	3	3.93 m	76.8
18	13.1 q	13.4 q	4	3.89 m	75.5
19	19.3 q	19.5 q	5	3.56 m	73.6
20	208.3 s	209.6 s	6	1.64 d (6.0) / 1.74 d (6.0) ^c	17.8
21	30.9 q	31.4 q	FucI		
			1	4.75 ^a / 4.79 d (7.2) ^c	102.0
			2	4.21 m	82.8
			3	3.98 m	74.9
			4	3.87 m	71.7
			5	3.67 m	71.6
			6	1.34 d (6.4) / 1.39 d (6.4) ^c	16.9
			FucII		
			1	4.74 ^a / 4.79 d (7.2) ^c	106.9
			2	4.25 m	73.8
			3	3.86 m	75.0
			4	3.82 m	72.5
			5	3.51 m	71.9
			6	1.34 d (6.4) / 1.33 d (6.4) ^c	17.1

^{a,b}overlapped with the signals of H_2O and H_3 -21, respectively. ^crecorded in C_5D_5N/D_2O (4:1).

Figure 1 The structure of compound 1

References

- 1. H. D. Chludil, A. M. Seldes, M. S. Maier, J. Nat. Prod., 2002, 65 (2), 153.
- 2. A. J. Roccatagliata, M. S. Maier, A. M. Seldes, et al., J. Nat Prod., 1994, 57 (6), 747.
- 3. M. Iorizzi, L. Minale, R. Riccio, et al., J. Nat. Prod., 1991, 54 (5), 1254.
- 4. A. A. Kicha, A. J. Kalinowskii, E. V. Levina, et al., Khim. Prir. Soedin., 1985, 801.
- 5. A. A. Kicha, A. J. Kalinowskii, P. V. Andriyaschenko, et al., Khim. Prir. Soedin., 1986, 592.
- 6. H. Kobayashi, M. Namikoshi, T. Yoshimoto, et al., J. Antibiotics, 1996, 49 (9), 873.
- 7. Y. Itakura, T. Komori, *Liebigs Ann. Chem.*, **1986**, 359.
- 8. M. Honda, T. Komori, Tetrahedron Lett., 1986, 27 (29), 3369.
- 9. J. W. Blunt, J. B. Stothers, Org. Magn. Reson., 1977, 9, 439.
- 10. S. A. Avilov, A. S. Antonov, A. S. Silchenko, et al., J. Nat. Prod., 2003, 66 (7), 910.
- 11. Y. C. Kim, R. Higuchi, T. Komori, Liebigs Ann. Chem., 1992, 453.

Received 9 May, 2004